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A numerical modeling approach was developed to simulate the propagation of 
shear and longitudinal sound waves in arbitrary, dense dispersions of spherical 
particles.  The scattering interactions were modeled with vector multipole 
functions and boundary condition solutions for each particle.  Multiple scattering 
was simulated by translating the scattered wave fields from one particle to another 
with the use of translational addition theorems, summing the multiple-scattering 
contributions, and recalculating the scattering using an iterative method.  The 
theory and initial results for the model are presented, including an integral 
derivation for the translational addition theorems.  The model can simulate 3D 
material microstructures with a variety of particle size distributions, compositions, 
and volume fractions.  To test the model, spectra and wave field patterns were 
generated from both ordered and disordered microstructures containing up to 
several hundred particles.  The model predicts wave propagation phenomena such 
as refractive focusing, mode conversion, and band gap phenomena.  The 
convergence of the iterations ranges from excellent to fair, and is dependent on 
the field (longitudinal or shear), particle configuration, and elastic wave 
frequency.  The model is currently limited by the computation of sufficiently high 
multipole order for the simulation of dense particle dispersions. 
 
PACS numbers:  43.20.Gp, 43.35.Cg 

 
I. INTRODUCTION 
 

The propagation of elastic waves through particles randomly dispersed in a liquid or solid is 
relevant to many applications, including the nondestructive evaluation of particulate composites, 
the design of advanced acoustic materials, the process monitoring of suspensions, the ultrasonic 
examination of living tissues, and seismic models for various geologic media (sediments, rocks, 
etc.).  Modeling elastic waves in such systems is difficult, however, due to multiple scattering 
between particles, mode conversion from scattering at particle surfaces, lack of periodicity in the 
particle configuration, and heterogeneity of particle sizes and compositions. Non-empirical, 
physics-based models are therefore desired to simulate elastic wave propagation in dense, 
random dispersions of particles and predict the resultant macroscopic wave propagation 
properties. 
 

This paper presents the theory and results of a numerical model developed to address 
these goals.  The model uses vector multipole functions, boundary condition solutions, 
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translational addition theorems, and direct iteration to solve the multiple-scattering 
problem for an arbitrary distribution of spheres in a solid matrix.  The model can 
calculate either the spatial patterns or frequency spectra of elastic wave fields for a 
simulated random particle configuration.  Macroscopic properties such as attenuation and 
velocity can therefore be predicted for a wide variety of particulate systems. 
 

Multiple scattering in particulate systems is not solvable in an exact, closed analytical form 
for an arbitrary number and arrangement of particles.  Scattering models must therefore use 
either statistical formulations or numerical simulation.  The simulation of elastic waves in 
complex particle dispersions is computationally exhausting, however, for many modeling 
approaches.  Finite methods are the most widely used numerical approaches for modeling fields 
in physical systems, but are often limited to 2D representations or the use of periodic cells for the 
simulation of particle dispersions.1-3  These simplifications reduce the number of calculations, 
but may also exclude effects arising from a fully random and 3D particle configuration. 

 
Multipole approaches can be more efficient than finite methods for modeling systems with 

spherical, spheroidal, or cylindrical particles since a multipole field contains significantly more 
information than a field value at a grid point.  Several multipole techniques have been developed 
for multiple scattering, including transfer matrix (T matrix) methods, fast multipole methods, and 
direct iterative methods (as opposed to iterative solution methods for matrix approaches). 
 

The direct iterative method has been applied to electromagnetic scattering in small 
collections of spherical particles, where it is also known as the order-of-scattering method.4-6  
Direct iterative methods have yet to be applied, however, to fully random 3D particle systems 
with large numbers of particles (>100 particles), high particle concentrations (>20%), and mixed 
particle sizes and properties.  Additionally, multipole-based acoustic models for particulate 
systems have been limited to either longitudinal wave propagation or periodic lattices of 
particles.7-9  Little work has been reported on the modeling of full elastic wave scattering in 
random particulate systems, with longitudinal and shear waves in both particles and matrix. 
 

There are a number of reasons to justify the use of a direct iterative approach over a T matrix, 
fast multipole, or unit-cell approach.  The T matrix approach solves the multiple-scattering 
problem as a linear system of equations.  In contrast, the direct iterative approach solves for 
multiple scattering by iteratively recomputing the multiple-scattering contributions until 
convergence of the elastic wave fields.  Direct iterative methods are therefore computationally 
simpler and avoid the pitfalls of numerically inverting large matrices for large numbers of 
particles.  Often, such matrices are solved using iterative methods, which could be argued as 
placing the direct iterative approach on the same level as the T matrix approach.  However, the 
direct iterative approach sidesteps the need to explicitly formulate and solve the multiple 
scattering as a problem in linear algebra. 
 

An additional advantage of the iterative approach is its correspondence to the physically 
intuitive order-of-scattering concept, where each iteration step represents a successive order of 
scattering.  For example, the initial fields before iteration correspond to the zero-order 
contributions to multiple scattering (single-scattering approximation), the first iteration 
corresponds to the first-order contributions, the second iteration corresponds to the second-order 
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contributions, and so on.  The ability to separately compute and inspect each successive 
scattering order provides a deeper understanding of the scattering process and of the effects of 
multiple scattering.  It also provides a useful diagnostic of the model’s performance and 
accuracy, and allows certain interactions to be excluded for computational efficiency (e.g., 
interactions between distant particles). 
 

In comparison to fast multipole methods, the iterative approach treats the particle 
configurations in a more straightforward manner without resorting to segregation of the particles 
into groups with short-range (particle-to-particle) and long-range (group-to-group) interactions.  
The fast multipole method reduces the computations associated with such simulations by 
imposing a hierarchical scattering process that assumes material homogeneity at a sufficiently 
large scale above the particle level.10 This assumption limits the applicability of the approach to 
macroscopically homogeneous composites with little spatial variation in the microstructure.  The 
iterative multipole method, however, imposes no such restrictions on the material microstructure, 
and is additionally numerically simpler. 

 
For ordered particle systems, unit cell methods employ periodic boundary conditions to 

model an infinite lattice, and this method has also been applied to random ensembles.  The 
limitations of this method include the difficulty of modeling finite lattices (<103 particles), 
defects, and various levels of disorder.  The unit cell approach may therefore be insufficient for 
modeling acoustic band gap phenomena for point and line defects, lattice heterostructures, and 
small acoustic band gap (phononic) crystals.  When applied to random configurations (i.e., the 
unit cell is comprised of a random particle arrangement), the method introduces long-range order 
that may bias the model’s results.  
 

This paper presents the theory and initial results for an iterative multipole model developed 
for elastic wave propagation in particulate systems.  The particles are modeled as spheres 
embedded in a solid matrix, permitting the use of spherical wave functions for the elastic wave 
fields.  The model computes the propagation of waves by using single particle scattering 
solutions, addition theorems to translate the scattered fields from one particle to another, and 
iteration to compute the scattering resulting from the multiply scattered fields.  Simulations were 
performed on a personal computer for particle systems of up to several hundred particles and 
particle volume fractions up to 50%.  Initial results are presented for example simulations, and 
the capabilities and deficiencies of the current model are summarized.  Methods for improving 
both the accuracy and efficiency of the model are discussed. 
 
II. THEORY 
 
A. Vector multipole functions 
 
 Spherical wave expansions form the theoretical basis for the iterative multipole method, and 
describe elastic waves derived from the Navier equation for linear, homogeneous materials: 
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Eq. (1) can be recast as two separate vector Helmholtz equations by splitting the displacement 
vector u into longitudinal and transverse parts and imposing an harmonic time dependency of the 
form : tie ω−

 
  ,                  (2) 0)( 22 =+∇ LLk u
 
  .                  (3) 0)( 22 =+∇ SSk u
 

Solutions to the vector Helmholtz equation in spherical coordinates are the vector spherical 
wave functions.  The vector spherical wave functions in this work were constructed from 
spherical radial functions and vector spherical harmonics denoted as  and  
respectively.  These functions are also referred to as vector multipole functions.  The spherical 
radial functions are comprised of the spherical Bessel functions  for standing waves 
inside the particles, spherical Hankel functions of the first kind  for outward-propagating 
scattered waves, and spherical Hankel functions of the second kind  for inward-
propagating incident waves. 
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The vector spherical harmonics used in this work are eigenfunctions of the quantum angular 

momentum operators , , , and , and are also known as pure-orbital vector spherical 
harmonics.

2Ĵ zĴ 2L̂ 2Ŝ
11-13  Using helicity basis vectors and scalar spherical harmonics they can be defined 

as 
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The C-symbols are the Clebsch-Gordan coefficients commonly used in quantum mechanics and 
derived from integrals involving three spherical harmonics.  The notation used is from 
Varshalovich et al.13  Vector functions are necessary for representing shear elastic fields, and the 
vector spherical harmonics provide a compact notation for otherwise awkward combinations of 
scalar spherical harmonics. 
 

Since they are solutions to the Helmholtz equation, the vector multipole functions can be 
generated from a scalar potential Φ  and vector potential  defined as following: Ψ
 

∑ ∑
∞

=

+

−=

=Φ
0

),()(
n

n

nm
nmn Ykrz ϕθ                (5) 

 

∑ ∑
∞

=

+

−=

=
0

),()(
n

n

nm

n
nmn krz ϕθYΨ                (6) 

 
The vector multipole functions are derived by applying the gradient and curl operations to the 
potentials in the following manner: 
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The resulting vector multipole functions are complete and orthogonal multipole expansions for n 
= 0 to ∞ and m = -n to +n, and are the following: 
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U, V, and W are the longitudinal, electric, and magnetic vector multipole functions, 

respectively.  They are similar to other widely used wave function and multipole formulations, 
specifically the L, N, and M vector spherical wave functions of Stratton14; the A(r;L), A(r;E), 
and A(r;M) vector multipoles of Greiner and Maruhn, Rose, and Edmonds11,15,16; and the X 
vector spherical harmonic of Jackson.17  The U, V, and W functions, however, are specifically 
consistent with the definitions in Eqs. (5-9) as opposed to other vector multipole definitions, and 
provide a more compact notation than Stratton’s vector spherical wave functions. 

 
U corresponds to the longitudinal displacement field.  V and W are transverse fields that can 

correspond to either elastic shear fields or electromagnetic fields.  For elastic waves, V 
corresponds to the shear-electric displacement field (shear field with electric-type vector 
multipole function), and W corresponds to the shear-magnetic displacement field (shear field 
with magnetic-type vector multipole function).  The horizontal and vertical conventions normally 
used to differentiate the two types of shear fields are not used here due to the ambiguity of 
distinguishing vertical and horizontal orientations in a spherical coordinate system. 
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The initial waves incident on the particles are modeled as plane waves.  The spherical 

expansion for the longitudinal plane wave is derived from the gradient of the partial wave 
expansion for scalar fields: 
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At least three different partial wave expansions have been presented in the literature for 
transverse vector planes waves, including those by Stratton,14 Jackson,17 and Greiner and 
Maruhn.11  Extensive mathematical analysis and numerical testing, however, has shown that the 
expansions of Greiner and Maruhn present the correct formulation and consistently converge.  
These expansions were reformulated for the U, V, and W functions, and for shear waves 
propagating in the z direction and polarized in the x and y directions.  These partial wave 
expansions are the following: 
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B. Boundary condition solutions 
 

Iterative simulation of multiple scattering in a dispersion of spherical particles first requires 
scattering solutions for the individual spheres.  For scattering from a single solid sphere in a solid 
matrix, there will be an incoming incident field, a refracted internal field, and an outgoing 
scattered field for each of the U, V, and W wave fields.  Each of these wave field components 
will also have an associated amplitude coefficient.  Fig. 1 shows the relationship between each of 
the field components and the coefficients. 
 

Single-sphere scattering has been solved numerous times in the literature, but often not in the 
most general form.  These solutions mostly model the incident fields as plane waves with only a 
longitudinal or shear component.18-23  Although these conditions are often sufficient for dilute 
suspensions, the incident fields for each particle in the iterative multipole approach will not in 
general be plane waves, but a combination of the initial plane waves and the scattered waves 
from other particles.  Also, the incident fields will be a combination of both longitudinal and 
shear waves.  Single-sphere scattering solutions were therefore required for arbitrary incident 
fields comprised of both longitudinal and shear waves. 
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FIG. 1.  Diagram of incident, refracted, and scattered elastic waves for single-particle scattering, 
with associated amplitude coefficients for the (n,m) multipole moment. 
 

Given an arbitrary incident field, the amplitude coefficients of the refracted and scattered 
fields are found by solving the boundary conditions on the surface of the sphere.  The boundary 
conditions provide a set of six linear equations for the six unknown coefficients.  Three of these 
equations are obtained from continuity of the displacements, and the other three are derived from 
continuity of the stresses, where u is the vector displacement and σ is the stress tensor: 
 

refractedscatteredincident uuu =+  ,               (16) 
 

refractedscatteredincident σσσ =+ .               (17) 
 
Orthogonality conditions for the vector spherical harmonics are used to eliminate the angular 
dependence from the boundary conditions.  The resulting equations have the following matrix 
form which relate the six unknown coefficients to the three known coefficients: 
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The η-symbols are functions of the spherical radial functions, multipole order N, longitudinal 
wave vector kL, shear wave vector kS, and the sphere radius a.  The j, h, and g in the η-functions 
refer to the type of radial function used in η [ )(krjj n= , h , and ].  The η-
functions are given in the appendix, with the appropriate radial function substituting for z.  Since 
the solution matrix separates into a 4×4 matrix and 2×2 matrix, the shear-magnetic fields are 

)()1( krhn= )()2( krhg n=
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decoupled from the longitudinal and shear-electric fields and do not participate in mode 
conversion.  The scattering amplitudes for each sphere are obtained in the scattering model by 
solving the 2×2 and 4×4 matrices. 
 
C. Translation of scattered fields 
 

After computing the wave fields due to single-sphere scattering for all of the particles in the 
simulation, the scattered waves from each particle are then propagated to the other particles to 
become part of their incident wave fields.  New scattered waves are then recomputed with use of 
the above boundary conditions, and the process is repeated.  This procedure iteratively updates 
the incident fields with the multiple-scattering contributions until the amplitudes of the scattered 
waves converge.  Since the scattered wave fields for each particle are in the original particle’s 
coordinate system, the vector multipole functions for each particle must be transformed into the 
coordinate systems of the other particles in order to update the incident fields.  This is 
accomplished with the use of special spherical wave expansions known as translational addition 
theorems.  The transformation of the vector multipole functions from one coordinate system to 
another are expressed as follows: 
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Fig. 2 shows the geometric relationship for the field translations between two spherical 

particles.  The untranslated fields , , and  in Eqs. (19)-(21) represent waves 
scattered from the original or “transmitting” sphere α, and are in sphere α’s coordinate system.  
The translated fields 

nmU nmV nmW

νµU′ , , and νµV′ νµW′  represent the scattered waves incident on a second or 
“receiving” sphere β, and are transformed to sphere β’s coordinate system.  The global position 
vectors for the two spheres are Rα and Rβ.  The position of sphere α with respect to sphere β is 
therefore Rαβ= Rα - Rβ.  The translation vector rα is in sphere α’s local coordinate system.  The 
translational addition theorems therefore express the vector multipole functions in the α 
coordinate system (rα, θα, and ϕα) as expansions of multipole functions in the β coordinate 
system (rβ, θβ, and ϕβ).  These translation coefficients are only valid on the surface of sphere β 
(rβ = aβ, where aβ is the radius of sphere β).  Note that the center of sphere α must lie outside of 
sphere β (aβ < Rαβ).  This restricts the use of the addition theorems to spheres external to each 
other and non-overlapping.  Although addition theorems can also be derived for spheres 
embedded within larger spheres (aβ > Rαβ), this work will only concern itself with the more 
commonly used external forms. 
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FIG. 2.  Position (Rα and Rβ) and translation (rα) vectors for addition theorems with respect to 
local and global coordinates for spheres α and β. 
 

The scalar addition theorem is sufficient for translating the longitudinal field since the 
longitudinal vector multipole function arises from a scalar potential [Eq. (7)].  The scalar 
addition theorem has been published extensively,24-27 and provides the  translation 
coefficients: 
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The vector addition theorems are required to translate the shear fields since the transverse 

vector multipole functions arise from a vector potential.  Cruzan was one of the earliest to derive 
expressions for the  and  translation coefficients by directly translating the coordinates in 
the vector spherical wave functions and applying various identities and relationships to arrive at 
an analytical solution.

nmSνµ
nmTνµ

28

 
Another approach is to expand components of the vector multipole functions in the α 

coordinate system into expansions containing translation coefficients and vector spherical 
harmonics in the β coordinate system.  The expression is then integrated in a manner similar to a 
Fourier series to determine the translation coefficients.  The fields originating from sphere α are 
described by vector multipole functions containing terms of the form .  
Expanding these individual components in the β coordinate system yields the following: 
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The expansion coefficients  are functions only of the relative position vector 

R
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αβ, and can be determined from the following integral: 
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The values of the scattered α/incident β multipole fields are only relevant at the surface of sphere 
β, therefore  is integrated over the surface of sphere β with θ)(,,

,, αβµνλ RmnlΠ β and ϕβ as our 
variables of integration. 

 
The integral is solved by first performing the dot product between the two vector spherical 

harmonics.  The spherical harmonic terms in the α coordinate system are then expanded in terms 
of bipolar spherical harmonics containing products of spherical harmonics in the β (local) and αβ 
(global) coordinate systems.13  The integration is then performed over the surface of sphere β, 
and the summation indices are simplified with the use of orthogonality conditions imposed by 
the Clebsch-Gordan coefficients.  The final form for the expansion coefficients is the following: 
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Since the expansion coefficients in Eq. (25) only translate individual multipole terms in the 

U, V, and W wave functions, further derivation is required to transform the entire field 
expressions as given by Eqs. (20) and (21).  To determine  and , it is first necessary to 
separate the spherical Bessel function from the expansion coefficients: 

nmSνµ
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This provides vector multipole terms of the form  for constructing fields 
incident to sphere β (note that the new incident fields are functions of spherical Bessel functions 
rather than spherical Hankel functions of the second kind): 

),()( ββ
λ
νµβλ ϕθYkaj
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Two methods can then be used to derive expressions for  and .  In the first method, 

the vector fields are translated directly using the expansion coefficients of Eq. (27) and equating 
the U, V, and W wave functions and associated scattered wave field coefficients with the U′, V′, 
and W′ wave functions and incident wave field coefficients.  In the second method, the potentials 
for the fields are translated using Eq. (27).  This method is possible since the fields can be 
derived from the vector potential Ψ , and requires equating the potentials and corresponding 
amplitude coefficients and subsequently reconstructing the vector fields using Eqs. (8) and (9).  
Both methods produce a set of equivalent solutions for the translation coefficients  and , 
the simplest of which are the following: 
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where 
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Testing of Eqs. (28-30) showed they are numerically equivalent to those of Cruzan.20  

Recurrence formulas have been derived for both the scalar and vector addition theorems, and 
significantly reduce the number of calculations for computing the translation coefficients.21-23  
However, the direct expressions in Eqs. (22) and (28-30) were used to demonstrate proof-of-
concept for the modeling approach. 
 
D. Multiple-scattering computations 
 

The computations are performed by first calculating the scattered wave fields for each 
particle in the system due to an initial plane wave.  The scattered wave fields are then translated 
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between all of the particles and summed for each particle.  A new incident wave field (initial + 
scattered wave fields) is then used to compute revised scattered wave fields from each particle.  
This process is continued by iteration until the scattered wave fields converge (i.e., no change in 
amplitude coefficients between consecutive iterations).  Each iteration represents a successive 
order of scattering (first iteration = first-order multiple scattering, second iteration = second-
order multiple scattering, etc.).  Fig. 3 illustrates the computation process. 
 
 

1. Input computation limits
and particle configuration

2. Calculate scattered waves
from initial plane wave

3. Translate scattered waves
and sum new incident waves

4. Recalculate scattered waves

5. Check wave field convergence
6. Output wave field

spectra or images

Ite
ra

tio
n 

Lo
op

 
 
FIG. 3.  Flow diagram of computation steps performed in the elastic wave scattering model. 
 

The model can be configured to provide either wave field images or spectral results.  
Computation limits include the maximum multipole expansion order to compute (nmax), and the 
precision limit for stopping the iterations.  Computer algorithms for the model were written, 
debugged, and compiled in Fortran 90.  Simulations were performed on a personal desktop 
computer with 256 MB RAM and a 1.7 GHz processor to test the functioning and performance 
of the model.  Computation times varied from a few minutes to 36 hours. 

 
In addition to wave field images and attenuation spectra, it is also possible to model elastic 

wave velocity with the iterative multipole method.  Although the vector multipole functions are 
time-independent solutions to the Navier equation, the ability to manipulate the amplitude of the 
initial plane wave as a function of frequency allows the simulation of pulses through the use of 
Fourier transforms.  This is accomplished by modifying the spectral input for the initial plane 
wave with appropriate wavelet functions [Fig. 4(a)], calculating the interactions of the modified 
wave in the simulated particle pack, and applying an inverse Fourier transform to the resultant 
spectra.  The inverse transform creates a wave pulse in the time domain.  Analysis of the time 
delay between this pulse and one with the simulated particle pack absent, Fig. 4(b), provides the 
effective wave velocity (note that pulse attenuation can also be obtained).  This procedure is 
equivalent to simulating the frequency characteristics of a transmitting ultrasonic transducer.  
The spatial characteristics of the transducer’s wave field can also be modeled by appropriately 
modifying the multipole components of the initial wave.  For example, a point source would 
produce wave fields comprised exclusively of monopole and dipole moments for the longitudinal 
and shear fields respectively. 
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      (a)             (b) 
 
FIG. 4.  Modulation of the initial plane wave spectrum using wavelet transforms (a), and time-
delay comparison of resultant pulses for an 1167-particle dispersion (b). 
 
III. RESULTS 
 
A. Simulations of two to sixteen particles 
 

The scattering interactions between two particles were initially simulated to test the ability of 
the model to reproduce wave propagation phenomena.  The particles were modeled as quartz 
spheres in a matrix of water ice, and the wave field patterns were imaged to reveal whether 
realistic wave behavior was simulated.  The acoustic properties of quartz and ice are sufficiently 
different to clearly show scattering phenomena such as reflection, but not too different to 
preclude other types of wave propagation such as refraction through particles.  Fig. 5 shows 
images of the scattered wave fields resulting from a longitudinal wave incident on two spheres 
aligned along the direction of wave propagation (from left to right in the images).  The incident 
wave was not superimposed on the scattered wave fields in order to emphasize the scattering 
mechanisms, and the image grey scale is proportional to the scattered wave field amplitude.  The 
images display both refractive focusing (forward scattering) of the longitudinal wave, Fig. 5(a), 
and mode conversion of a small part of the longitudinal wave to shear waves, Fig. 5(b). 
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      (a)             (b) 
 
FIG. 5.  Wave field images of scattered waves resulting from an incident 5-MHz longitudinal 
wave with a pair of 1.0-mm diameter quartz spheres in ice:  (a) Scattered longitudinal wave 
displaying focusing, and (b) scattered shear wave displaying mode conversion from longitudinal 
wave. 
 

Since most of the wave behavior in Fig. 5 arises from single-sphere scattering, single-
scattering computations were compared to the multiple-scattering computations to ascertain the 
differences between the two solutions and determine the effects of multiple scattering.  The 
single-scattering computations superimpose the single-scattering solutions from each of the 
spheres to calculate the effective field.  Figs. 6(a) and 6(b) are difference plots of the multiply 
scattered longitudinal and shear waves in Figs. 5(a) and 5(b), respectively, with the single-
scattering solutions.  The difference plots highlight the spatial regions where multiple scattering 
has the largest contribution to the wave fields.  The images in Fig. 6 clearly show the primary 
effect of multiple scattering in the two-sphere configuration is the shielding of the second (right) 
sphere by the first (left) sphere. 
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      (a)             (b) 
 
FIG. 6.  Displacement differences between multiple-scattering and single-scattering models for 
an incident longitudinal wave, showing a scattered longitudinal wave, z component (a), and a 
mode-converted shear wave, x component (b). 
 
 Simulations were subsequently performed for 2D dispersions containing up to 16 particles to 
gauge the model’s ability to calculate multiple scattering in more complex structures.  Fig. 7 
displays the propagation of a plane wave with mixed longitudinal and shear components through 
an ordered [Fig. 7(a)] and random [Fig. 7(b)] configuration of quartz particles.  Here the images 
show the x component of the shear fields, and the incident wave fields are superimposed on the 
scattered wave fields to give a truer representation of the elastic fields in the material system.  
Figure 7(a) shows the shear wave amplitude decreasing as it progresses from left to right through 
the particle lattice.  A total decrease in peak-to-peak amplitude of 44% is observed across the 
image field.  Since the constituent material properties are fully elastic with no built-in attenuation 
properties, the attenuation of the shear waves is due wholly to scattering.  The attenuation 
probably arises from an acoustic band gap since the waves are passing though an ordered array 
with a lattice spacing commensurate with the wavelength.  In contrast, Figure 7(b) shows 
localized wave field concentrations between and within certain particles.  This localization of 
wave field energy may be due to resonance effects.  Also, the wave front in Fig. 7(b) is distorted 
from the initial plane-wave geometry due to the disordered structure of the particles, in contrast 
to Fig. 7(a) where the planar wave front is preserved. 
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      (a)             (b) 
 
FIG. 7.  Total (scattered + incident) shear wave x component for an incident mixed longitudinal-
shear wave at 1.0 MHz, for ordered (a) and disordered (b) configurations of quartz particles in 
ice (diameter = 0.8-1.4 mm). 
 

The results from simulation of two to sixteen particles demonstrate the model’s ability to 
reproduce basic wave propagation behavior such as refraction, mode conversion, and acoustic 
band gaps at a qualitative level.  All of the above simulations were calculated to a maximum 
multipole order of nmax = 6. 

 
B. Simulations of dispersions with 102-103 particles 
 

Spectra and wave field images for larger 3D particle packs (100-700 particles) were also 
generated to demonstrate the ability to model actual material microstructures.  Fig. 8 displays the 
simulated geometry [Fig. 8(a)] and spectra [Fig. 8(b)] for a cylindrical arrangement of 200-µm 
diameter NaCl particles in a soft polymer matrix.  For the simulation of spectra, the wave fields 
are evaluated on a planar array of points with a circular shape.  This array simulates the face of 
an ultrasonic transducer by averaging the wave field amplitudes over a defined area.  This 
averaging is necessary since local interference effects arise when the fields are evaluated at a 
single point.  The particle pack dimensions are also kept constant to eliminate effects due to 
changes in sample size.  As shown in the spectra [Fig. 8(b)], the model predicts that the 
attenuation increases with particle volume fraction and frequency.  These results are both 
intuitive (closer-packed particles lead to greater ultrasonic losses due to scattering) and supported 
by experiment. 
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      (a)            (b) 
 
FIG. 8.  Simulation geometry (a) and spectra (b) for a random microstructure of 200-µm 
diameter NaCl particles in a soft polymer, displaying attenuation due to increased volume 
fraction of particles. 
 

Fig. 9 compares the wave fields for periodic [Fig. 9(a)] and random [Fig. 9(b)] arrangements 
of 200-µm diameter particles in a soft polymer matrix at 50% volume fraction.  The particle 
packings are three dimensional and cylindrical as shown in Fig. 8(a), with the image plane 
slicing through the center of the cylinder along the cylinder’s axis.  The incident wave is 
superimposed in these images in order to evaluate the effect of order/disorder on the total elastic 
wave field.  The wave field images in Fig. 9 indicate greater fluctuation and non-uniformity for 
the elastic fields associated with the random particle configuration [Fig. 9(b)] as compared to the 
periodic lattice [Fig. 9(a)].  The ability to simulate both spectra and wave field patterns allows a 
more thorough characterization of wave propagation in a particle-filled medium.  Both spectral 
[Fig. 8(b)] and wave field simulations [Fig. 9] were computed to a maximum multipole order of 
nmax = 3. 
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      (a)             (b) 
 
FIG. 9.  Wave field images of displacement resulting from an incident 0.5-MHz longitudinal 
wave in a cylindrical packing of 200-µm diameter NaCl particles in rubber at 50% volume 
fraction:  (a) Body-centered-cubic (bcc) lattice of 649 particles, and (b) random packing of 736 
particles.  
 
 The ability to predict elastic wave velocity was also demonstrated with simulations of 
dispersions containing 600-µm glass particles in a soft polymer matrix.  The dispersions 
contained up to 3000 particles and 50% particle volume fraction.  The results show an initial 
increase in effective velocity with increasing packing density up to 20%, which is consistent with 
experimental observations.  However, above 20% particle volume the model under-predicts the 
velocity.  These results demonstrate the viability of the Fourier transform method for modeling 
wave velocity in dispersions of spherical particles, but also indicate the current simulations are 
not accurate for dense packings.  This deficiency can be attributed to a lack of convergence for 
the translational addition theorems at the nmax values used for the velocity simulations (nmax = 4).  
The next section examines the convergence properties of the model. 
 
C. Convergence 
 

The convergence properties of the model can be divided into three components:  
Convergence of the addition theorems, convergence of the spectra of the effective field, and 
convergence of the iterations.  These components behave independent of one another; i.e., the 
convergence of one component is not dependent on the convergence of the other two.  All three 
of these convergences, however, are dependent on the maximum computed multipole order 
(nmax), on the frequency of the propagating wave, and on the structure of the particle dispersion 
(particle distances, particle orientations, and degree of order-disorder).  Convergence of all three 
components is necessary for computational fidelity. 
 
 
 

Approved for public release; distribution unlimited.   Iterative simulation of scattering 18 



Addition Theorem Convergence 
 
 The convergence of the addition theorems [Eqs. (19-21)] was numerically tested by 
translating the elastic fields from one sphere to an evaluation point on another sphere and 
comparing the translated fields to the untranslated fields at that point.  Convergence was 
evaluated as a function of nmax, frequency, sphere size, sphere separation, orientation of the two 
spheres, and orientation of the evaluation point on the second sphere.  Since the fields 
represented elastic fields in solids, the size and distance scale for the receiving sphere (sphere β) 
was in the centimeter range, and the frequencies were in the 0-1.0 MHz range.   
 

All three multipole fields (U, V, and W) were tested with an initial quadrupole (n=2, m=1) 
moment.  A quadrupole moment was chosen since most multiple-scattering methods seek to 
model many-body wave interactions beyond the dipole approximation, which becomes 
increasingly less accurate as scatterers become more closely spaced.  Additionally, a quadrupole 
moment represents a good compromise between n > 2 moments and the simple dipole moments 
since computation time increases by approximately the sixth power of the multipole order.  Also 
note the coupling between the V and W fields in the addition theorems [Eqs. (20-21)] requires 
the sum of the two transverse fields to be compared instead of the two fields individually (i.e., V 
+ W is compared to V’ + W’, rather than V to V’ and W to W’). 

 
Following the coordinate conventions in Fig. 2, Figs. 10-13 are convergence plots for sphere 

β positioned at Θαβ = 34°, Φαβ = 295°, and with four separation distances (Rαβ = 1.0, 2.0, 3.0, 
and 4.0 cm).  The evaluation point on sphere β was positioned at θβ = 163°, ϕβ = 320°, and aβ = 
0.5 cm.  Each figure displays results for a different frequency (0.01, 0.10, 0.50, and 1.00 MHz 
respectively).  At low frequencies (Fig. 10), the results show that field translations converge 
more rapidly as a function of nmax for larger sphere separations.  However, as the field frequency 
increases to 0.10 MHz, the convergence curves gradually shift and begin to overlap for the two 
most distant positions (Fig. 11).  The curves continue to shift with higher frequency and overlap 
for all positions at 0.50 MHz (Fig. 12).  The curves continue to shift, however, with increasing 
frequency and cross one another at 1.0 MHz (Fig. 13). 
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FIG. 10.  Addition theorem convergence for translation of 0.01-MHz shear fields between two 
1.0-cm diameter quartz spheres in ice.  R = Rαβ = center-to-center distance between spheres in 
cm.  Numbers in parentheses are kRαβ values. 
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FIG. 11.  Addition theorem convergence for translation of 0.10-MHz shear fields between two 
1.0-cm diameter quartz spheres in ice.  R = Rαβ = center-to-center distance between spheres.  
Numbers in parentheses are kRαβ values. 
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FIG. 12.  Addition theorem convergence for translation of 0.50-MHz shear fields between two 
1.0-cm diameter quartz spheres in ice.  R = Rαβ = center-to-center distance between spheres.  
Numbers in parentheses are kRαβ values. 
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FIG. 13.  Addition theorem convergence for translation of 1.00-MHz shear fields between two 
1.0-cm diameter quartz spheres in ice.  R = Rαβ = center-to-center distance between spheres.  
Numbers in parentheses are kRαβ values. 
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 The convergence curves indicate the degree of error present in the field translations for a 
specified nmax, frequency, and particle separation.  For example, the convergence curves for Fig. 
12 would correspond to the two-sphere simulations in Figs. 5 and 6 (since the frequency-sphere 
diameter parameter kd is equivalent).  From Fig. 12, however, it is clear computations to nmax = 6 
will result in field translation errors on the order of 10% for Rαβ  = 2, and an nmax value of 12 is 
required to achieve errors on the order of 1%.   Therefore, although the iteration sequence of the 
model may converge to a solution, the field translations, which are crucial to accurately 
representing the multiple-scattering interactions, may not be convergent and introduce various 
degrees of error into the solution. 
 
Spectral Convergence 
 

In multipole-based optical scattering models for single scatterers, the convergence of the 
scattered wave amplitudes as a function of frequency is dependent on the particle diameter d and 
maximum computed multipole order nmax.  Simulation results verify the relationship between 
nmax, d, and convergence frequency νmax (the highest frequency at which the wave fields 
converge) is proportional for multiple-scattering computations of elastic waves as well: 
 

maxmax 4
3 n

d
c

π
ν ≈ ,                 (31) 

 
The symbol c is the wave velocity in the matrix.  An example is the following.  For longitudinal 
wave scattering from 1-mm diameter quartz particles in ice (cL = 3.98×105 cm/s) and for nmax = 
4, the maximum frequency at which the spectrum converges is νmax ≈ 4 MHz.  This result 
indicates that the elastic wave spectra will be convergent for frequencies from 0-4 MHz at nmax = 
4, but that higher nmax values will be required for convergence at higher frequencies.  The 
spectral convergence is independent of addition theorem and iterative convergence, yet lack of 
spectral convergence can contribute significant error to multiple-scattering simulation results. 
 
Iterative Convergence 
 

Iterative convergence assures that the back-and-forth scattering interactions modeled with 
each iteration step converge to stable wave field amplitudes.  This is physically required since 
each successive multiple scattering produces a diminishing contribution to the total field, 
eventually resulting in the final field configuration.  Computationally, however, this convergence 
is not always assured due to numerical instabilities.   Simulations of a variety of small and large 
particle packings have shown that all three elastic fields converge to within computational limits 
(10-16 for double precision) for random structures and a wide range of frequencies [Fig. 14(a)].  
Both the longitudinal and shear-electric fields also converge for ordered structures such as cubic 
lattices [Fig. 14(b)].  However, the shear magnetic field does not converge at most frequencies 
for a cubic lattice, but rather displays fractional differences in amplitude on the order of 10-2 to 
10-4 between iteration steps [Fig. 14(b)].  The origin of the nonconvergence for the shear-
magnetic field has not yet been resolved.  However, the nonconvergence has not affected most of 
the multiple-scattering simulations to date due to its small effect on the final field amplitudes and 
its limitation to ordered lattices.  The failure of the shear-magnetic field to converge for ordered 
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lattices suggests the nonconvergence may be attributable to resonance effects, numerical 
instabilities, or both. 
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       (a)            (b) 
 
FIG. 14.  Iterative convergence of simulations for a cluster of eight 1.0-mm diameter quartz 
particles in ice with incident 2.5-MHz longitudinal and shear waves:  (a) Random cluster, and (b) 
cubic cluster. 
 
 In addition to dispersion structure (particle-particle orientations), iterative convergence has 
also been found to be dependent on frequency, average particle separation (volume fraction of 
particles), and nmax.  Iterative convergence appears independent of both addition theorem and 
spectral convergence, however, indicating that all three convergence criteria must be considered 
in iterative multipole models. 
 
IV. DISCUSSION 
 

The results to date indicate the iterative multipole model reproduces realistic wave 
propagation behavior at a qualitative level.  Phenomena such as mode conversion, refraction, 
scattering-induced attenuation, and band-gap attenuation have been observed in both wave field 
images and spectra.  The model can also simulate large numbers of particles and complex 
random structures directly.  Random particle packings of up to 3000 particles and 50% particle 
volume fraction have been modeled.  The iterations are generally numerically stable and 
converge for most particle configurations and fields.  The one exception that has been found is 
for the shear-magnetic field in cubic lattices, where the convergence of the iterations plateaus at 
an error of approximately 10-3. 

 
 Addition theorem convergence is the current limiting factor for the iterative multipole 
approach implemented on a personal computer.  Due to the intensive computations involved with 
the addition theorems, the maximum computed multipole order (nmax) has so far been limited to 
values of 3-6.  Convergence studies of the addition theorems and model comparisons with 
experimental data indicate that these values are sufficient for dilute particle dispersions (up to 

Approved for public release; distribution unlimited.   Iterative simulation of scattering 23 



20% particle volume fraction), but are too low for denser packings.  Consequently, simulations 
performed to date with high particle densities probably have significant error in the multiple-
scattering contributions due to inadequate convergence of the field translations.  The numerical 
stability of the iterative procedure is surprisingly robust, however, with iterative convergence 
unaffected by either addition theorem convergence or spectral convergence.  Care must be taken, 
therefore, in interpreting the accuracy of the model results with regards to iterative convergence. 
 

A common approach to validating numerical-based multiple-scattering models is to compare 
the results for a small cluster of spheres to other numerical approaches such as the boundary 
element method.8  This approach is feasible for clusters of two or three spheres, but often 
becomes computationally intractable for large particle packings with more than a few dozen 
particles.  Alternatively, model results can be compared to experimental data.  This approach has 
been used extensively for evaluating classical formulations where multiple scattering is treated 
approximately.32-33  Analogous experimental validation of the iterative multipole method is 
therefore an appropriate test for the model. 
 

The current limitations of the iterative multipole model restrict its validity to dilute 
dispersions.  Here the particles are spaced sufficiently to allow the use of low nmax values for 
addition theorem convergence.  However, it is difficult to assess the accuracy of multiple-
scattering computations for these conditions since single scattering dominates in dilute 
dispersions.  One useful tool in evaluating the accuracy of the multiple-scattering computations 
is to compare their results to those of single-scattering computations for the same particle 
configuration.  Such comparisons show that the iterative multipole model agrees with the single-
scattering model for low nmax values.  This is a consistent finding for low particle densities since 
the multiple-scattering contributions to the total elastic wave field will be small in comparison to 
the single-scattering contributions.  It is also a consistent finding for high particle densities since 
it shows the low nmax values are insufficient for computing accurate translation coefficients for 
multiple scattering, again rendering their contribution to the total elastic wave field negligible. 

 
The difficulty in validating the iterative multipole model with dilute particle packings 

extends to other multiple-scattering models as well, and additionally illustrates how single 
scattering can overwhelm contributions from multiple scattering.  In such cases multiple-
scattering models may produce accurate results for a particle dispersion, although the multiple 
scattering may be insufficiently or incorrectly calculated.  Validation with dense particle systems 
is therefore necessary for accurately evaluating a model’s performance. 

 
The validation results to date for the iterative multipole model indicate that although the 

model appears to be running properly and accurately for dispersions with low particle densities, 
the computational limitation on nmax renders the model quantitatively inaccurate for dispersions 
with high particle densities.  Fig. 15 illustrates this conclusion by comparing longitudinal wave 
velocity results for the iterative multipole model, the single-scattering model, and experimental 
measurements for 600-µm glass beads in an elastic polymer matrix.  Note the agreement between 
the iterative multipole model and single-scattering model at high particle densities, indicating the 
insufficient computation of multiple scattering due to low nmax. 
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FIG. 15.  Comparison of longitudinal wave velocity at 0.5 MHz for the iterative multipole 
model, the single-scattering model, and experimental measurements for 600-µm glass beads in 
an elastic polymer matrix. 
 

Several solutions are available to resolve the computational limits to the iterative multipole 
method.  These include increasing the speed and efficiency of the addition theorem computations 
with the use of recurrence algorithms.29-31  The computations can also be simplified for fluid and 
mechanically soft matrices by limiting the propagating elastic fields to longitudinal waves.  
Finally, particle-particle interactions that do not significantly contribute to the multiple-scattering 
process (for example, from widely separated particles) can be omitted, thereby reducing the 
number of field translation computations.  Other foreseeable improvements for the iterative 
multipole approach consist of expanding the ability to model more complex particulate systems.  
These include simulating viscoelastic media with the use of complex material properties and 
wave vectors, and simulating mixtures of spherical voids and particles. 
 
 In comparison to other multipole approaches, the iterative or order-of-scattering method 
appears to be a more direct and accessible approach for modeling elastic waves scattering in 
arbitrary dispersions of spherical particles.  The iterative multipole method is numerically stable, 
particularly for random particle configurations, whereas stability cannot be guaranteed for 
inversion of large matrices.  Finally, the iterative multipole method is a highly generalized 
approach that can be applied to dispersions of spherical scatterers of almost any configuration 
and composition.  No fundamental assumptions or approximations about the dispersion structure 
are made.  For example, the dispersion structure is not assumed to be random or homogeneous at 
large scale sizes as required by fast multipole methods.  Additionally, the structure does not have 
to be built of repeating units or limited to two dimensions as is often the practice for finite 
methods. 
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V. CONCLUSIONS 
 

An iterative multipole method has been developed to model arbitrary configurations of 
spherical, elastic particles in an elastic matrix, and has been implemented on a personal computer 
to test its functioning and performance.  Initial results for systems of two to several hundred 
particles show that the model predicts many aspects of elastic wave behavior at the qualitative 
level.  The model is also quantitatively accurate for dispersions with low particle densities 
(<20% particle volume fraction).  However, assessing the accuracy of a multiple-scattering 
model for dilute dispersions is difficult since single-scattering interactions dominate.  At higher 
particle densities, the model predictions deviate due to limitations in computing sufficiently high 
multipole orders (nmax = 8-16) for convergence of the addition theorems.  Methods for resolving 
these limitations include the use of recurrence formulas for computing the addition theorems, 
approximations that reduce the number of computations by limiting the multiple scattering to the 
most significant interactions, and implementation of the model on larger computer systems.  
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APPENDIX 
 

The η functions for solution of the elastic wave boundary condition matrix, Eq. (18) are 
presented below.  The η’s are functions of the multipole order N, longitudinal wave vector kL, 
shear wave vector kS, and the sphere radius a.  The spherical radial functions are denoted by z, 
and vary according to the radial function designated in Eq. (18) [ )(krjj n= , , and 
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